/** This class contains equations about the properties of water. It is primarily based on The International Association for the Properties of Water and Steam (IAPWS, http://iapws.org/) document IAPWS R6-95(2018), a PDF of which is usually available from: http://www.iapws.org/relguide/IAPWS-95.html Specifically, the file http://www.iapws.org/relguide/IAPWS95-2018.pdf All references to equation and table numbers are the equation numbers in this document. The development of this document is discussed in https://aip.scitation.org/doi/10.1063/1.1461829 There is an online calculator that can be used to validate these equations at: http://twt.mpei.ac.ru/mcs/worksheets/iapws/IAPWS95.xmcd IAPWS also produces a simpler formulation "for industry", called IAPWS-IF97 which is described at: http://www.iapws.org/relguide/IF97-Rev.html That page contains a PDF of IAPWS-IF97 and some "backward equations" that make it easier to calculate without iterating inverse solutions. These may be used to find good "first guesses" for inverse solutions. Simpler equations for vapor pressure and densities at the saturation point are found here: http://www.iapws.org/relguide/Supp-sat.html especially in the PDF file: http://www.iapws.org/relguide/Supp-sat.pdf These can be used to obtain good initial guesses for finding higher-accuracy results in the full IAPWS95 model. A scientific paper describing the derivation of the saturation properties can be found at: https://aip.scitation.org/doi/10.1063/1.555926 All of the methods in this class are class-level methods so you don't need an instance of the Water class to call them. Just call them like: Water.boilingPoint[1 atmosphere] */ class Water { /** Constants as defined in IAPWS RS-95(2018). These may not exactly match the current best-known values of these constants in the SI, but they are used as defined there for purposes of matching its output exactly. */ /** The temperature of the critical point of water. (eq.1) */ class var Tc = 647.096 K /** The critical density of water. (eq.2) */ class var rhoc = 322 kg m^-3 /** The specific gas constant. Due to the use of the specific gas constant, Eq. (4) corresponds to a mass-based formulation. In order to convert values of specific properties to molar properties, an appropriate value for the molar mass should be used (eq. 3) */ class var R = 0.46151805 kJ kg^-1 K^-1 /** The critical pressure of water from IAPWS SR1-86(1992) */ class var pc = 22.064 MPa /** The triple point of water. */ class var TriplePoint = 273.16 K /** IAPWS doesn't directly define the molar mass of water directly but indicates that the best-known values of several of these constants have changed since the model was published. It sort of waves its hand at George S. Kell, Effects of isotopic composition, temperature, pressure, and dissolved gases on the density of liquid water Journal of Physical and Chemical Reference Data 6, 1109 (1977); https://doi.org/10.1063/1.555561 to hint that it contains a suitable definition of the molar mass. Its masses and isotope ratios are taken from "Atomic Weights of the Elements 1973", Pure Appl. Chem 37, 589-603 (1974) Of course, none of this matches the current definition of Avogadro's constant, the gas constant, etc. Anyway, this is the version of the molar mass of water defined in that paper, and the one that should probably be used with this model and its definition of R. See the notes for R above. */ class var molarMassH2O = 18.015242 g/mol /** Calculates the pressure at the specified density and temperature. p = ρ^2 (df/dρ)_T See Table 3 for this equation. */ class pressure[ρ is mass_density, T is temperature] := { δ = ρ / rhoc return ρ R T (1 + δ dφrδDimensioned[ρ, T]) } /** Calculates the compressibility factor Z = p / (ρ R T) */ class compressibilityFactor[ρ is mass_density, T is temperature] := { return pressure[ρ, T] / (ρ R T) } /** Calculates the specific internal energy of the system at the specified density and temperature. Multiply this by mass to get the energy. u = f - T (df/dT)_rho returns energy / mass */ class specificInternalEnergy[ρ is mass_density, T is temperature] := { δ = ρ / rhoc τ = Tc / T return τ R T dφdτ[δ, τ] } /** Calculates the specific entropy s = -(df/dT)_rho Multiply by mass to get the total entropy. This has units of specific heat capacity (e.g. cal/g/degC) */ class specificEntropy[ρ is mass_density, T is temperature] := { δ = ρ / rhoc τ = Tc / T return R (τ dφdτ[δ, τ] - φ[δ, τ]) } /** Calculates the specific enthalpy h = f - T(df/dT)_rho + ρ(df/dρ)_T Multiply by mass to get the total enthalpy. This has units of energy/mass */ class specificEnthalpy[ρ is mass_density, T is temperature] := { δ = ρ / rhoc τ = Tc / T return R T (1 + τ dφdτ[δ, τ] + δ dφrδ[δ, τ]) } /** Calculates the specific isochoric heat capacity c_v = (du/dT)_rho This has units of specific heat capacity (e.g. cal/g/degC) */ class specificIsochoricHeatCapacity[ρ is mass_density, T is temperature] := { δ = ρ / rhoc τ = Tc / T return R (-τ^2 d2φτ[δ, τ]) } /** Calculates the specific isobaric heat capacity c_p = (dh/dT)_p This has units of specific heat capacity (e.g. cal/g/degC) */ class specificIsobaricHeatCapacity[ρ is mass_density, T is temperature] := { δ = ρ / rhoc τ = Tc / T return R (-τ^2 d2φτ[δ, τ] + (1 + δ dφrδ[δ, τ] - δ τ d2φrδτ[δ, τ])^2 / (1 + 2 δ dφrδ[δ, τ] + δ^2 d2φrδ[δ, τ])) } /** Calculates the speed of sound. w = (dp/dρ)^(1/2) This has units of velocity */ class speedOfSound[ρ is mass_density, T is temperature] := { δ = ρ / rhoc τ = Tc / T return sqrt[R T (1 + 2 δ dφrδ[δ, τ] + δ^2 d2φrδ[δ,τ] - (1 + δ dφrδ[δ, τ] - δ τ d2φrδτ[δ, τ])^2/(τ^2 (d2φτ[δ, τ])))] } /** The Joule-Thompson coefficient mu = (dT/dρ)_h Results have units of temperature / pressure */ class JouleThompsonCoefficient[ρ is mass_density, T is temperature] := { δ = ρ / rhoc τ = Tc / T return (-(δ dφrδ[δ, τ] + δ^2 d2φrδ[δ,τ] + δ τ d2φrδτ[δ,τ]) / ((1 + δ dφrδ[δ, τ] - δ τ d2φrδτ[δ,τ])^2 - τ^2 d2φτ[δ,τ] (1 + 2 δ dφrδ[δ, τ] + δ^2 d2φrδ[δ, τ]))) / (R ρ) } /** The isentropic temperature-pressure coefficent βₛ = (dT/dp)_s Results have units of temperature / pressure */ class isentropicTemperaturePressureCoefficient[ρ is mass_density, T is temperature] := { δ = ρ / rhoc τ = Tc / T return (1 + δ dφrδ[δ, τ] - δ τ d2φrδτ[δ, τ]) / ((1 + δ dφrδ[δ, τ] - δ τ d2φrδτ[δ,τ])^2 - τ^2 d2φτ[δ,τ] (1 + 2 δ dφrδ[δ, τ] + δ^2 d2φrδ[δ, τ])) / (R ρ) } /** The isothermal throttling coefficient delta_T = (dh/dp)_T This has units of inverse density (e.g. m^3 / kg) */ class isothermalThrottlingCoefficient[ρ is mass_density, T is temperature] := { δ = ρ / rhoc τ = Tc / T return (1-(1 + δ dφrδ[δ, τ] - δ τ d2φrδτ[δ, τ])/ (1 + 2 δ dφrδ[δ, τ] + δ^2 d2φrδ[δ,τ])) / ρ } /** The second virial coefficient B(T). "Even at low density, real gases don't quite obey the ideal gas law. A systematic way to account for deviations from ideal behavior is the virial expansion, P V = n R T (1 + B(T)/(V/n) + C(T)/(V/n)^2 + ...) where the functions B(T), C(T), and so on are called the "virial coefficents". When the density of the gas is fairly low, so that the volume per mole is large, each term in the series is much smaller than the one before. In many situations it's sufficient to omit the third term and concentrate on the second, whose coefficent B(T) is called the second virial coefficient (the first coefficient being 1.)" --Daniel V. Schroeder, An Introduction to Thermal Physics, p.9 B(τ) rhoc = lim[φrδ(δ, τ), δ->0] Units are m^3 kg^-1 This actually returns the *specific* version of B. To get the dimensionless units that will work in the equation above, you need to multiply by Water.molarMassH2O */ class B[T is temperature] := { τ = Tc / T sum = 0 for i = [1,2,3,8,9,10,23] { [cᵢ, dᵢ, tᵢ, nᵢ] = Table2@i sum = sum + nᵢ τ^tᵢ } for i = 55 to 56 { [aᵢ, bᵢ, Bᵢ, nᵢ, Cᵢ, Dᵢ, Aᵢ, βᵢ] = Table2@i θᵢ = Aᵢ + 1 - τ // See footnote b, p.12 sum = sum + nᵢ (θᵢ^2 + Bᵢ)^bᵢ exp[-Cᵢ - Dᵢ(τ-1)^2] } return sum/rhoc } /** The third virial coefficient C(T). See the discussion for the second virial coefficient B[T] above. Units are m^6 kg^-2 This actually returns the *specific* version of C. To get the dimensionless units for the equation documented in B[T], you need to multiply by Water.molarMassH2O */ class C[T is temperature] := { τ = Tc / T sum = 0 for i = [4,5,11,12,24,25,26] { [cᵢ, dᵢ, tᵢ, nᵢ] = Table2@i sum = sum + 2 nᵢ τ^tᵢ } for i = 8 to 10 { [cᵢ, dᵢ, tᵢ, nᵢ] = Table2@i sum = sum - 2 nᵢ τ^tᵢ } for i = 55 to 56 { [aᵢ, bᵢ, Bᵢ, nᵢ, Cᵢ, Dᵢ, Aᵢ, βᵢ] = Table2@i θᵢ = Aᵢ + 1 - τ // See footnote b, p.12 sum = sum + 4 nᵢ (Cᵢ (θᵢ^2 + Bᵢ) - bᵢ (Aᵢ θᵢ / βᵢ + Bᵢ aᵢ))* (θᵢ^2 + Bᵢ)^(bᵢ-1) exp[-Cᵢ - Dᵢ(τ-1)^2] } return sum/rhoc^2 } /** Calculates the specific internal energy of the system at the specified atmospheric pressure equals the saturated vapor pressure. You can use StandardAtmosphereTest.frink which calls StandardAtmosphere.frink to find the approximate atmospheric pressure for any altitude. */ class boilingPoint[ps is pressure] := { return saturatedTemperature[ps] } /** Returns the approximate saturated vapor pressure of water from IAPWS SR1-86(1992). This does not use the full IAPWS95 model, but it can be used to get a very good first guess. This is Section 3 */ class saturatedVaporPressure[T is temperature] := { θ = T/Tc τ = 1 - θ p = pc exp[Tc/T (-7.85951783 τ + 1.84408259 τ^(3/2) + -11.7866497 τ^3 + 22.6807411 τ^(7/2) + -15.9618719 τ^4 + 1.80122502 τ^(15/2))] return p } /** Returns the approximate saturated vapor pressure of water from IAPWS IF-97. This does not use the full IAPWS95 model, but it can be used to get a very good first guess. This is Section 8 and 8.1 of IAPWS IF-97 */ class saturatedVaporPressure97[Ts is temperature] := { Tstar = 1 K Θ = Ts / Tstar + Table34@9 / ((Ts/Tstar) - Table34@10) // eq. 29b A = Θ^2 + Table34@1 Θ + Table34@2 B = Table34@3 Θ^2 + Table34@4 Θ + Table34@5 C = Table34@6 Θ^2 + Table34@7 Θ + Table34@8 p = 1 MPa ((2 C) / (-B + (B^2 - 4 A C)^(1/2)))^4 // eq. 30 return p } /** Returns the approximate saturated vapor temperature of water from IAPWS97. This does not use the full IAPWS95 model, but it can be used to get a very good first guess. This is Section 8.2 of IAPWS97. */ class saturatedTemperature[ps is pressure] := { // Equation 31 pstar = 1 MPa β = (ps / pstar)^(1/4) // Eq. 29a E = β^2 + Table34@3 β + Table34@6 F = Table34@1 β^2 + Table34@4 β + Table34@7 G = Table34@2 β^2 + Table34@5 β + Table34@8 D = (2 G)/(-F - (F^2 - 4 E G)^(1/2)) Ts = 1 K ((Table34@10 + D - ((Table34@10 + D)^2 - 4(Table34@9 + Table34@10 D))^(1/2)) / 2) return Ts } /** Returns the approximate saturated liquid density of water from IAPWS SR1-86(1992). This does not use the full IAPWS95 model, but it can be used to get a very good first guess. This is Section 4.1 */ class saturatedLiquidDensity[T is temperature] := { θ = T/Tc τ = 1-θ ρ = rhoc (1 + 1.99274064 τ^(1/3) + // b1 1.09965342 τ^(2/3) + // b2 -0.510839303 τ^(5/3) + // b3 -1.75493479 τ^(16/3) + // b4 -45.5170352 τ^(43/3) + // b5 -6.74694450e5 τ^(110/3)) // b6 return ρ } /** Returns the approximate saturated vapor density of water from IAPWS SR1-86(1992). This does not use the full IAPWS95 model, but it can be used to get a very good first guess. This is Section 4.2 */ class saturatedVaporDensity[T is temperature] := { θ = T/Tc τ = 1-θ ρ = rhoc exp[1 + -2.03150240 τ^(2/6) + // c1 -2.68302940 τ^(4/6) + // c2 -5.38626492 τ^(8/6) + // c3 -17.2991605 τ^(18/6) + // c4 -44.7586581 τ^(37/6) + // c5 -63.9201063 τ^(71/6)] // c6 return ρ } /** The specific Helmholtz free energy f (also sometimes called A). The IAPWS formulation is implemented as a fundamental equation for the specific Helmholtz free energy f. This equation is expressed in dimensionless form, φ = f/(R T), or, conversely f = φ R T (see eq. 4 and following) */ class f[ρ is mass_density, T is temperature, debug=false] := { return R T phiDimensioned[ρ, T, debug] } /** The formulation of the φ equation is implemented as a dimensionless version φ[δ, τ] where δ = ρ / rhoc τ = Tc / T This turns a dimensionally-correct call with density and temperature into the internal dimensionless form. (see eq.4 and following) */ class phiDimensioned[ρ is mass_density, T is temperature, debug=false] := { return φ[ρ / rhoc, Tc / T, debug] } /** The dimensionless φ function φ[δ, τ] is separated into two parts, an ideal-gas part φ0[δ, τ] and a residual part φr[δ, τ] (eq. 4) */ class φ[δ is dimensionless, τ is dimensionless, debug=false] := { φ0 = φ0[δ, τ] φr = φr[δ, τ] if debug println["φ0=$φ0\nφr=$φr\n"] return φ0 + φr } /** Calculates the first derivative of φ with respect to τ. This includes both the ideal gas and residual parts. */ class dφdτ[δ is dimensionless, τ is dimensionless] := { return dφ0dτ[δ, τ] + dφrτ[δ, τ] } /** Calculates the second derivative of φ with respect to τ. This includes both the ideal gas and residual parts. */ class d2φτ[δ is dimensionless, τ is dimensionless] := { return d2φ0dτ[δ, τ] + d2φrτ[δ, τ] } /** Calculates the second derivative of φ with respect to δ. This includes both the ideal gas and residual parts. */ class d2φδ[δ is dimensionless, τ is dimensionless] := { return d2φ0dδ[δ, τ] + d2φrδ[δ, τ] } /** The ideal gas part φ0 of the dimensionless Helmholtz free energy. This is obtained from an equation for the specific isobaric heat capacity in the ideal-gas state developed by Cooper [6] This implements eq. 5 */ class φ0[δ is dimensionless, τ is dimensionless] := { sum = ln[δ] + Table1@1 + /* n1 0 */ Table1@2 τ + /* n2 0 */ Table1@3 ln[τ] /* n3 0 */ for i = 4 to 8 { [nᵢ, θᵢ] = Table1@i sum = sum + nᵢ ln[1 - exp[-θᵢ τ]] } return sum } /** The first partial derivative of the ideal gas part of the dimensionless Helmholtz free energy with respect to δ. */ class dφ0dδ[δ is dimensionless, τ is dimensionless] := { return 1/δ } /** The second partial derivative of the ideal gas part of the dimensionless Helmholtz free energy with respect to δ. */ class d2φ0dδ[δ is dimensionless, τ is dimensionless] := { return -1 / δ^2 } /** The first partial derivative of the ideal gas part of the dimensionless Helmholtz free energy with respect to τ. */ class dφ0dτ[δ is dimensionless, τ is dimensionless] := { sum = Table1@2 + Table1@3 / τ for i=4 to 8 { [nᵢ, θᵢ] = Table1@i sum = sum + nᵢ θᵢ ((1 - exp[-θᵢ τ])^-1 - 1) } return sum } /** The second partial derivative of the ideal gas part of the dimensionless Helmholtz free energy with respect to τ. */ class d2φ0dτ[δ is dimensionless, τ is dimensionless] := { sum = -Table1@3 / τ^2 for i=4 to 8 { [nᵢ, θᵢ] = Table1@i sum = sum - nᵢ θᵢ^2 exp[-θᵢ τ] (1 - exp[-θᵢ τ])^-2 } return sum } /** The second partial derivative of the ideal gas part of the dimensionless Helmholtz free energy with respect to δ then with respect to τ. */ class d2φ0dδdτ[δ is dimensionless, τ is dimensionless] := { return 0 } /** The residual part φr[δ, τ] of the dimensionless Helmholtz free energy. This implements eq. 6 */ class φr[δ is dimensionless, τ is dimensionless] := { sum = 0 for i=1 to 7 { [cᵢ, dᵢ, tᵢ, nᵢ] = Table2@i sum = sum + nᵢ δ^dᵢ τ^tᵢ } for i=8 to 51 { [cᵢ, dᵢ, tᵢ, nᵢ] = Table2@i sum = sum + nᵢ δ^dᵢ τ^tᵢ e^(-δ^cᵢ) } for i=52 to 54 { [cᵢ, dᵢ, tᵢ, nᵢ, αᵢ, βᵢ, θᵢ, εᵢ] = Table2@i sum = sum + nᵢ δ^dᵢ τ^tᵢ * exp[-αᵢ (δ - εᵢ)^2 - βᵢ(τ - θᵢ)^2] } for i=55 to 56 { [aᵢ, bᵢ, Bᵢ, nᵢ, Cᵢ, Dᵢ, Aᵢ, βᵢ] = Table2@i Ψ = exp[-Cᵢ (δ-1)^2 - Dᵢ (τ - 1)^2] θ = (1 - τ) + Aᵢ ((δ-1)^2)^(1/(2 βᵢ)) Δ = θ^2 + Bᵢ ((δ-1)^2)^aᵢ sum = sum + nᵢ Δ^bᵢ δ Ψ } return sum } /** The partial derivative of φr[δ, τ] with respect to δ, with correct dimensions. */ class dφrδDimensioned[ρ is mass_density, T is temperature] := { return dφrδ[ρ / rhoc, Tc / T] } /** The partial derivative of φr[δ, τ] with respect to δ. This implements eq. 6 */ class dφrδ[δ is dimensionless, τ is dimensionless] := { sum = 0 for i=1 to 7 { [cᵢ, dᵢ, tᵢ, nᵢ] = Table2@i sum = sum + nᵢ dᵢ δ^(dᵢ-1) τ^tᵢ } for i=8 to 51 { [cᵢ, dᵢ, tᵢ, nᵢ] = Table2@i sum = sum + nᵢ exp[-δ^cᵢ] (δ^(dᵢ-1) τ^tᵢ(dᵢ - cᵢ δ^cᵢ)) } for i=52 to 54 { [cᵢ, dᵢ, tᵢ, nᵢ, αᵢ, βᵢ, θᵢ, εᵢ] = Table2@i sum = sum + nᵢ δ^dᵢ τ^tᵢ exp[-αᵢ (δ-εᵢ)^2 - βᵢ (τ-θᵢ)^2] (dᵢ/δ - 2 αᵢ (δ - εᵢ)) } for i=55 to 56 { [aᵢ, bᵢ, Bᵢ, nᵢ, Cᵢ, Dᵢ, Aᵢ, βᵢ] = Table2@i Ψ = exp[-Cᵢ (δ-1)^2 - Dᵢ (τ - 1)^2] θ = (1 - τ) + Aᵢ ((δ-1)^2)^(1/(2 βᵢ)) Δ = θ^2 + Bᵢ ((δ-1)^2)^aᵢ dΨdδ = -2 Cᵢ (δ-1) Ψ dΔdδ = (δ-1) (Aᵢ θ 2 / βᵢ ((δ-1)^2)^(1/(2 βᵢ)-1) + 2 Bᵢ aᵢ((δ-1)^2)^(aᵢ-1)) dΔbidδ = bᵢ Δ^(bᵢ-1) dΔdδ sum = sum + nᵢ (Δ^bᵢ (Ψ + δ dΨdδ) + dΔbidδ δ Ψ) } return sum } /** The second partial derivative of φr[δ, τ] with respect to δ, with correct dimensions. */ class d2φrδDimensioned[ρ is mass_density, T is temperature] := { return d2φrδ[ρ / rhoc, Tc / T] } /** The second partial derivative of φr[δ, τ] with respect to δ. */ class d2φrδ[δ is dimensionless, τ is dimensionless] := { sum = 0 for i=1 to 7 { [cᵢ, dᵢ, tᵢ, nᵢ] = Table2@i sum = sum + nᵢ dᵢ (dᵢ-1) δ^(dᵢ-2) τ^tᵢ } for i=8 to 51 { [cᵢ, dᵢ, tᵢ, nᵢ] = Table2@i sum = sum + nᵢ exp[-δ^cᵢ] (δ^(dᵢ-2) τ^tᵢ ((dᵢ - cᵢ δ^cᵢ)(dᵢ-1-cᵢ δ^cᵢ) - cᵢ^2 δ^cᵢ)) } for i=52 to 54 { [cᵢ, dᵢ, tᵢ, nᵢ, αᵢ, βᵢ, θᵢ, εᵢ] = Table2@i sum = sum + nᵢ τ^tᵢ exp[-αᵢ (δ-εᵢ)^2 - βᵢ(τ-θᵢ)^2] * (-2 αᵢ δ^dᵢ + 4 αᵢ^2 δ^dᵢ (δ-εᵢ)^2 - 4 dᵢ αᵢ δ^(dᵢ-1) (δ-εᵢ) + dᵢ (dᵢ-1) δ^(dᵢ-2)) } for i=55 to 56 { [aᵢ, bᵢ, Bᵢ, nᵢ, Cᵢ, Dᵢ, Aᵢ, βᵢ] = Table2@i Ψ = exp[-Cᵢ (δ-1)^2 - Dᵢ (τ - 1)^2] θ = (1 - τ) + Aᵢ ((δ-1)^2)^(1/(2 βᵢ)) Δ = θ^2 + Bᵢ ((δ-1)^2)^aᵢ dΨdδ = -2 Cᵢ (δ-1) Ψ dΔdδ = (δ-1) (Aᵢ θ 2 / βᵢ ((δ-1)^2)^(1/(2 βᵢ)-1) + 2 Bᵢ aᵢ((δ-1)^2)^(aᵢ-1)) d2Ψdδ = (2 Cᵢ (δ-1)^2 -1) 2 Cᵢ Ψ dΔbidδ = bᵢ Δ^(bᵢ-1) dΔdδ d2Δdδ = 1 / (δ-1) dΔdδ + (δ-1)^2 (4 Bᵢ aᵢ (aᵢ-1)((δ-1)^2)^(aᵢ-2) + 2 Aᵢ^2 (1/βᵢ)^2 (((δ-1)^2)^(1/(2 βᵢ) - 1))^2 + Aᵢ θ 4/βᵢ (1 / (2 βᵢ) - 1)((δ-1)^2)^(1/(2 βᵢ) - 2)) d2Δbidδ = bᵢ (Δ^(bᵢ-1) d2Δdδ + (bᵢ - 1) Δ^(bᵢ-2) dΔdδ^2) sum = sum + nᵢ (δ^bᵢ (2 dΨdδ + δ d2Ψdδ) + 2 dΔbidδ (Ψ + δ dΨdδ) + d2Δbidδ δ Ψ) } return sum } /** The partial derivative of φr[δ, τ] with respect to τ, with correct dimensions. */ class dφrτDimensioned[ρ is mass_density, T is temperature] := { return dφrτ[ρ / rhoc, Tc / T] } /** The partial derivative of φr[δ, τ] with respect to τ. */ class dφrτ[δ is dimensionless, τ is dimensionless] := { sum = 0 for i=1 to 7 { [cᵢ, dᵢ, tᵢ, nᵢ] = Table2@i sum = sum + nᵢ tᵢ δ^dᵢ τ^(tᵢ-1) } for i=8 to 51 { [cᵢ, dᵢ, tᵢ, nᵢ] = Table2@i sum = sum + nᵢ tᵢ δ^dᵢ τ^(tᵢ-1) exp[-δ^cᵢ] } for i=52 to 54 { [cᵢ, dᵢ, tᵢ, nᵢ, αᵢ, βᵢ, θᵢ, εᵢ] = Table2@i sum = sum + nᵢ δ^dᵢ τ^tᵢ exp[-αᵢ (δ-εᵢ)^2 - βᵢ (τ-θᵢ)^2] (tᵢ/τ - 2 βᵢ(τ - θᵢ)) } for i=55 to 56 { [aᵢ, bᵢ, Bᵢ, nᵢ, Cᵢ, Dᵢ, Aᵢ, βᵢ] = Table2@i Ψ = exp[-Cᵢ (δ-1)^2 - Dᵢ (τ - 1)^2] θ = (1 - τ) + Aᵢ ((δ-1)^2)^(1/(2 βᵢ)) Δ = θ^2 + Bᵢ ((δ-1)^2)^aᵢ dΔbidτ = -2 θ bᵢ Δ^(bᵢ-1) dΨdτ = -2 Dᵢ (τ-1) Ψ sum = sum + nᵢ Δ (dΔbidτ Ψ + Δ^bᵢ dΨdτ) } return sum } /** The partial second derivative of φr[δ, τ] with respect to τ, with correct dimensions. */ class d2φrτDimensioned[ρ is mass_density, T is temperature] := { return d2φrτ[ρ / rhoc, Tc / T] } /** The partial second derivative of φr[δ, τ] with respect to τ. */ class d2φrτ[δ is dimensionless, τ is dimensionless] := { sum = 0 for i=1 to 7 { [cᵢ, dᵢ, tᵢ, nᵢ] = Table2@i sum = sum + nᵢ tᵢ (tᵢ-1) δ^dᵢ τ^(tᵢ-2) } for i=8 to 51 { [cᵢ, dᵢ, tᵢ, nᵢ] = Table2@i sum = sum + nᵢ tᵢ (tᵢ-1) δ^dᵢ τ^(tᵢ-2) exp[-δ^cᵢ] } for i=52 to 54 { [cᵢ, dᵢ, tᵢ, nᵢ, αᵢ, βᵢ, θᵢ, εᵢ] = Table2@i sum = sum + nᵢ δ^dᵢ τ^tᵢ exp[-αᵢ (δ-εᵢ)^2 - βᵢ (τ-θᵢ)^2] ((tᵢ/τ - 2 βᵢ(τ - θᵢ))^2 - tᵢ/τ^2 - 2 βᵢ) } for i=55 to 56 { [aᵢ, bᵢ, Bᵢ, nᵢ, Cᵢ, Dᵢ, Aᵢ, βᵢ] = Table2@i Ψ = exp[-Cᵢ (δ-1)^2 - Dᵢ (τ - 1)^2] θ = (1 - τ) + Aᵢ ((δ-1)^2)^(1/(2 βᵢ)) Δ = θ^2 + Bᵢ ((δ-1)^2)^aᵢ dΔbidτ = -2 θ bᵢ Δ^(bᵢ-1) dΨdτ = -2 Dᵢ (τ-1) Ψ d2Ψdτ = (2 Dᵢ (τ-1)^2 - 1) 2 Dᵢ Ψ d2Δbidτ = 2 bᵢ Δ^(bᵢ-1) + 4 θ^2 bᵢ (bᵢ-1) Δ^(bᵢ-2) sum = sum + nᵢ δ (d2Δbidτ Ψ + 2 dΔbidτ dΨdτ + Δ^bᵢ d2Ψdτ) } return sum } /** The partial second derivative of φr[δ, τ] with respect to τ, with correct dimensions. */ class d2φrδτDimensioned[ρ is mass_density, T is temperature] := { return d2φrδτ[ρ / rhoc, Tc / T] } /** The partial second derivative of φr[δ, τ] with respect to δ then to τ. */ class d2φrδτ[δ is dimensionless, τ is dimensionless] := { sum = 0 for i=1 to 7 { [cᵢ, dᵢ, tᵢ, nᵢ] = Table2@i sum = sum + nᵢ dᵢ tᵢ δ^(dᵢ-1) τ^(tᵢ-1) } for i=8 to 51 { [cᵢ, dᵢ, tᵢ, nᵢ] = Table2@i sum = sum + nᵢ tᵢ δ^(dᵢ-1) τ^(tᵢ-1) (dᵢ - cᵢ δ^cᵢ) exp[-δ^cᵢ] } for i=52 to 54 { [cᵢ, dᵢ, tᵢ, nᵢ, αᵢ, βᵢ, θᵢ, εᵢ] = Table2@i sum = sum + nᵢ δ^dᵢ τ^tᵢ exp[-αᵢ (δ-εᵢ)^2 - βᵢ (τ-θᵢ)^2] (dᵢ/δ - 2 αᵢ (δ - εᵢ))(tᵢ/τ - 2 βᵢ(τ - θᵢ)) } for i=55 to 56 { [aᵢ, bᵢ, Bᵢ, nᵢ, Cᵢ, Dᵢ, Aᵢ, βᵢ] = Table2@i Ψ = exp[-Cᵢ (δ-1)^2 - Dᵢ (τ - 1)^2] θ = (1 - τ) + Aᵢ ((δ-1)^2)^(1/(2 βᵢ)) Δ = θ^2 + Bᵢ ((δ-1)^2)^aᵢ dΔbidτ = -2 θ bᵢ Δ^(bᵢ-1) dΨdτ = -2 Dᵢ (τ-1) Ψ d2Ψdτ = (2 Dᵢ (τ-1)^2 - 1) 2 Dᵢ Ψ dΨdδ = -2 Cᵢ (δ-1) Ψ d2Δbidτ = 2 bᵢ Δ^(bᵢ-1) + 4 θ^2 bᵢ (bᵢ-1) Δ^(bᵢ-2) dΔdδ = (δ-1) (Aᵢ θ 2 / βᵢ ((δ-1)^2)^(1/(2 βᵢ)-1) + 2 Bᵢ aᵢ((δ-1)^2)^(aᵢ-1)) dΔbidδ = bᵢ Δ^(bᵢ-1) dΔdδ d2Ψdδdτ = 4 Cᵢ Dᵢ (δ-1)(τ-1) Ψ d2Δbidδdτ = -Aᵢ bᵢ 2 / βᵢ Δ^(bᵢ-1) (δ-1)((δ-1)^2)^(1/(2 βᵢ) - 1) - 2 θ bᵢ (bᵢ-1) Δ^(bᵢ-2) dΔdδ sum = sum + nᵢ (Δ^(bᵢ) (dΨdτ + δ d2Ψdδdτ) + δ dΔbidδ dΨdτ + dΔbidτ (Ψ + δ dΨdδ) + d2Δbidδdτ δ Ψ) } return sum } /** Numerical values of the coefficients and parameters of the ideal-gas part of the dimensionless Helmholtz free energy, Eq. 5. This is table 1 in IAPWS-95. The coluns are [ni0, gammai0] */ class var Table1 = [undef, // No element 0 -8.3204464837497, 6.6832105275932, 3.00632, [0.012436, 1.28728967], [0.97315, 3.53734222], [1.27950, 7.74073708], [0.96956, 9.24437796], [0.24873, 27.5075105]] /** Numerical values of the coefficients and parameters of the residual part of the dimensionless Helmholtz free energy, Eq. (6) */ class var Table2 = [undef, // No element 0 //[cᵢ, dᵢ, tᵢ, nᵢ] [x, 1, -1/2, 0.12533547935523e-1], [x, 1, 7/8, 0.78957634722828e1], [x, 1, 1, -0.87803203303561e1], [x, 2, 1/2, 0.31802509345418], [x, 2, 3/4, -0.26145533859358], [x, 3, 3/8, -0.78199751687981e-2], [x, 4, 1, 0.88089493102134e-2], [1, 1, 4, -0.66856572307965], [1, 1, 6, 0.20433810950965], [1, 1, 12, -0.66212605039687e-4], [1, 2, 1, -0.19232721156002], [1, 2, 5, -0.25709043003438], [1, 3, 4, 0.16074868486251], [1, 4, 2, -0.40092828925807e-1], [1, 4, 13, 0.39343422603254e-6], [1, 5, 9, -0.75941377088144e-5], [1, 7, 3, 0.56250979351888e-3], [1, 9, 4, -0.15608652257135e-4], [1, 10, 11, 0.11537996422951e-8], [1, 11, 4, 0.36582165144204e-6], [1, 13, 13, -0.13251180074668e-11], [1, 15, 1, -0.62639586912454e-9], [2, 1, 7, -0.10793600908932], [2, 2, 1, 0.17611491008752e-1], [2, 2, 9, 0.22132295167546], [2, 2, 10, -0.40247669763528], [2, 3, 10, 0.58083399985759], [2, 4, 3, 0.49969146990806e-2], [2, 4, 7, -0.31358700712549e-1], [2, 4, 10, -0.74315929710341], [2, 5, 10, 0.47807329915480], [2, 6, 6, 0.20527940895948e-1], [2, 6, 10, -0.13636435110343], [2, 7, 10, 0.14180634400617e-1], [2, 9, 1, 0.83326504880713e-2], [2, 9, 2, -0.29052336009585e-1], [2, 9, 3, 0.38615085574206e-1], [2, 9, 4, -0.20393486513704e-1], [2, 9, 8, -0.16554050063734e-2], [2, 10, 6, 0.19955571979541e-2], [2, 10, 9, 0.15870308324157e-3], [2, 12, 8, -0.16388568342530e-4], [3, 3, 16, 0.43613615723811e-1], [3, 4, 22, 0.34994005463765e-1], [3, 4, 23, -0.76788197844621e-1], [3, 5, 23, 0.22446277332006e-1], [4, 14, 10, -0.62689710414685e-4], [6, 3, 50, -0.55711118565645e-9], [6, 6, 44, -0.19905718354408], [6, 6, 46, 0.31777497330738], [6, 6, 50, -0.11841182425981], // [cᵢ, dᵢ, tᵢ, nᵢ, αᵢ, βᵢ, θᵢ, εᵢ] [x, 3, 0, -0.31306260323435e2, 20, 150, 1.21, 1], [x, 3, 1, 0.31546140237781e2, 20, 150, 1.21, 1], [x, 3, 4, -0.25213154341695e4, 20, 250, 1.25, 1], // [aᵢ, bᵢ, Bᵢ, nᵢ, Cᵢ, Dᵢ, Aᵢ, βᵢ] [7/2, 85/100, 0.2, -0.14874640856724, 28, 700, 0.32, 3/10], [7/2, 95/100, 0.2, 0.31806110878444, 32, 800, 0.32, 3/10]] /** Numerical values for IAPWS97 table 34. These are used to solve saturation-pressure and saturation-temperature equations. */ class var Table34 = [undef, // No n0 0.11670521452767e4, // n1 -0.72421316703206e6, // n2 -0.17073846940092e2, // n3 0.12020824702470e5, // n4 -0.32325550322333e7, // n5 0.14915108613530e2, // n6 -0.48232657361591e4, // n7 0.40511340542057e6, // n8 -0.23855557567849, // n9 0.65017534844798e3] // n10 }