/** This is an attempt to find generalized ellipse equation that matches Pluto's orbit. For now, we're ignoring the latitude and only plotting the longitude. */ use planets.frink use fitConicSection.frink start = #1886# end = #2098# timestep = (end-start) / 4 args = new array t = start while t <= end { [L,B,R] = Planet.Pluto.getCoordinates[t] [x,y,z] = heliocentricToXYZ[L,B,R] args.push[x] args.push[y] t = t + timestep } //println[args] [x1,y1,x2,y2,x3,y3,x4,y4,x5,y5] = divide[args, au] println[fitPointsToText[x1,y1,x2,y2,x3,y3,x4,y4,x5,y5]] funcs = fitPointsToYFunctions[x1,y1,x2,y2,x3,y3,x4,y4,x5,y5] println[formatTable[mapList["inputForm", funcs], "right"]] g = plotPoints[x1,y1,x2,y2,x3,y3,x4,y4,x5,y5] [L,B,R] = Planet.Pluto.getCoordinates[now[]] println["L=" + (L->deg) + "B=" + (B->deg) + "R=$R"] [x,y,z] = divide[heliocentricToXYZ[L,B,R], au] println["x=$x, y=$y, z=$z"] g.color[0,1,0,.7] g.fillEllipseCenter[x, -y, 1, 1] g.show[]