Download or view earthdisttest.frink in plain text format
// Tests earth distance calculations according to example 11.c in Jean Meeus
// _Astronomical Algorithms_
// Note that this now uses a different ellipsoidal calculation than the
// Meeus calculations.
use navigation.frink
// Paris
long1 = (2 degrees + 20 arcmin + 14 arcsec) East
lat1 = (48 degrees + 50 arcmin + 11 arcsec) North
// Washington
long2 = (77 degrees + 3 arcmin + 56 arcsec) West
lat2 = (38 degrees + 55 arcmin + 17 arcsec) North
println[earthDistance[lat1, long1, lat2, long2]->"km"]
println[earthBearing[lat1, long1, lat2, long2]->"degrees"]
//MITLatEast = (42 degrees + 21.6154 arcmin) North
//MITLongEast = (71 degrees + 5.4036 arcmin) West
//MITLatWest = (42 degrees + 21.5176 arcmin) North
//MITLongWest = (71 degrees + 5.7038 arcmin) West
// Best Average from differential GPS
MITLatEast = 42.36022484 degrees North
MITLongEast = 71.09008343 degrees West
MITLatWest = 42.35861113 degrees North
MITLongWest = 71.09504458 degrees West
println[earthDistance[MITLatEast, MITLongEast, MITLatWest, MITLongWest]->"m"]
println[earthBearing[MITLatEast, MITLongEast, MITLatWest, MITLongWest]->"degrees"]
//println[earthBearing[MITLatEast, MITLongEast, MITLatEast, MITLongEast + .002 arcmin]->"degrees"]
Download or view earthdisttest.frink in plain text format
This is a program written in the programming language Frink.
For more information, view the Frink
Documentation or see More Sample Frink Programs.
Alan Eliasen, eliasen@mindspring.com